Fundamentals of Solid State Physics

Optical Properties

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn

Further Reading

- Fox, Chapter 1, 2, 7

Optical Properties of Materials

Metal

SiO_{2}

Silicon

- Crystal Structures
a polycrystalline, amorphous, single crystalline
- Electronics
- conductor, insulator, semiconductor
- Optics (in the visible range)
- reflective, transparent, absorbing

Fundamentals of Solid State Physics

Optical Processes

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn

Optical Processes

- Review: Maxwell's Equations
- Reflection, Transmission, Absorption, ...
- Optical propagation in multi-layers
- Transfer Matrix Method

Electrodynamics

- Maxwell's Equations

$$
\begin{aligned}
& \nabla \cdot \mathbf{D}=\rho_{V} \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}
\end{aligned}
$$

$$
\begin{aligned}
& \oint_{s} \mathbf{D} \cdot d \mathbf{A}=\int_{v} \rho \cdot d V \\
& \oint_{s} \mathbf{B} \cdot d \mathbf{A}=0 \\
& \oint_{l} \mathbf{E} \cdot d \mathbf{l}=-\int_{s} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{A} \\
& \oint_{l} \mathbf{H} \cdot d \mathbf{l}=\int_{s} \mathbf{J} \cdot d \mathbf{A}+\int_{s} \frac{\partial \mathbf{D}}{\partial t} \cdot d \mathbf{A}
\end{aligned}
$$

Electrodynamics

－Maxwell＇s Equations
Constitutive Relations本构关系

$$
\begin{aligned}
& \nabla \cdot \mathbf{D}=\rho_{V} \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{B}=\mu_{0} \mu_{r} \mathbf{H} \\
& \mathbf{D}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}
\end{aligned}
$$

$\varepsilon_{0} \varepsilon_{r}$－Permittivity（dielectric constant） $\varepsilon_{r}=1$ for vacuum

$$
\varepsilon_{0}=8.85^{*} 10^{-12} \mathrm{~F} / \mathrm{m}
$$

$\mu_{0} \mu_{r}$－Permeability

$$
\begin{aligned}
& \mu_{r}=1 \text { for vacuum } \\
& \mu_{0}=4 \pi^{*} 10^{-7} \mathrm{H} / \mathrm{m} \\
& \hline
\end{aligned}
$$

Electrodynamics

－Maxwell＇s Equations
Constitutive Relations
本构关系

$$
\begin{aligned}
& \nabla \cdot \mathbf{D}=\rho_{V} \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{B}=\mu_{0} \mu_{r} \mathbf{H} \\
& \mathbf{D}=\varepsilon_{0} \varepsilon_{r} \mathbf{E}
\end{aligned}
$$

For most non－magnetic materials（no magnetic field）， $\mu_{r}=1$

Optical properties of materials is determined by ε_{r}

Electrodynamics

- In vacuum

- $\rho_{V}=0, \mathrm{~J}=0$

ㅁ $\mu_{r}=1, \varepsilon_{r}=1$

$$
\begin{aligned}
& \nabla \cdot \mathbf{D}=\rho_{V} \\
& \nabla \cdot \mathbf{B}=0 \\
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}
\end{aligned}
$$

$$
\nabla^{2} \mathbf{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

$$
\mathbf{E}(x, t)=\mathbf{E}_{0} e^{i(k x-\omega t)} \quad \text { Plane Wave }
$$

$$
k=\frac{2 \pi}{\lambda}
$$

wavevector

$$
\omega=\frac{2 \pi}{T}
$$

Electrodynamics

- In vacuum

- $\rho_{V}=0, \mathrm{~J}=0$

ㅁ $\mu_{r}=1, \varepsilon_{r}=1$

$$
\begin{aligned}
& \nabla \cdot \mathbf{D}=\rho_{V} \\
& \nabla \cdot \mathbf{B}=0
\end{aligned}
$$

$$
\nabla^{2} \mathbf{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

$$
\mathbf{E}(x, t)=\mathbf{E}_{0} e^{i(k x-\omega t)} \quad \text { Plane Wave }
$$

$$
c=\frac{\omega}{k}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

light speed in vacuum

Electrodynamics

－In a dielectric medium
－$\rho_{V}=0, \mathrm{~J}=0$
ㅁ $\mu_{r}=1, \varepsilon_{r} \neq 1$

$$
\begin{aligned}
& \nabla \cdot \mathbf{D}=\rho_{V} \\
& \nabla \cdot \mathbf{B}=0
\end{aligned}
$$

$$
\nabla^{2} \mathbf{E}=\mu_{0} \varepsilon_{0} \varepsilon_{r} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}
$$

$$
\begin{aligned}
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \\
& \nabla \times \mathbf{H}=\frac{\partial \mathbf{D}}{\partial t}+\mathbf{J}
\end{aligned}
$$

$$
\mathbf{E}(x, t)=\mathbf{E}_{0} e^{i(k x-\omega t)} \quad \text { Plane Wave }
$$

$$
v=\frac{\omega}{k}=\frac{c}{\sqrt{\varepsilon_{r}}}=\frac{c}{n} \quad \varepsilon_{r}=n^{2}
$$

light speed in a material
n－refractive index（折射率）

Electrodynamics

- In a dielectric medium
- $\rho_{V}=0, \mathrm{~J}=0$

ㅁ $\mu_{r}=1, \varepsilon_{r} \neq 1$

$$
\mathbf{E}(x, t)=\mathbf{E}_{0} e^{i(k x-\omega t)} \quad \text { Plane Wave }
$$

$$
k=\frac{2 \pi}{\lambda^{\prime}}=\frac{2 \pi}{\lambda_{0}} n
$$

λ^{\prime} - wavelength in the medium
λ_{0} - wavelength in vacuum
Frequency ω does not change

Complex Form of ε_{r} and n

$$
\tilde{\varepsilon}_{r}=\tilde{n}^{2}
$$

$$
\tilde{\varepsilon}_{r}=\varepsilon_{1}+i \varepsilon_{2} \quad \tilde{n}=n+i \kappa
$$

$$
\rightarrow\left\{\begin{array}{c}
\varepsilon_{1}=n^{2}-\kappa^{2} \\
\varepsilon_{2}=2 n \kappa
\end{array}\right.
$$

ε_{r} and \boldsymbol{n} depend on optical frequency / wavelength

Complex Form of ε_{r} and n

$$
\left\{\begin{array}{l}
n=\frac{1}{\sqrt{2}}\left(\varepsilon_{1}+\sqrt{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}}\right)^{1 / 2} \\
\kappa=\frac{1}{\sqrt{2}}\left(-\varepsilon_{1}+\sqrt{\varepsilon_{1}^{2}+\varepsilon_{2}^{2}}\right)^{1 / 2}
\end{array}\right.
$$

when $\varepsilon_{1} \gg \varepsilon_{2}$ (or $n \gg k$), weakly absorbing

$$
\rightarrow\left\{\begin{array}{l}
n \approx \sqrt{\varepsilon_{1}} \\
\kappa \approx \frac{\varepsilon_{2}}{2 n}
\end{array}\right.
$$

Reflection 反射

Incident wave

$$
\mathbf{E}(x, t)=\mathbf{E}_{0} e^{i(k x-\omega t)}
$$

Reflective wave

$$
\mathbf{E}_{R}(x, t)=\mathbf{E}_{R} e^{i(-k x-\omega t)}
$$

Reflectivity 反射率 based on boundary conditions of Maxwell＇s Equations

$$
R=\left|\frac{\mathbf{E}_{R}}{\mathbf{E}_{0}}\right|^{2}=\left|\frac{\tilde{n}_{2}-\tilde{n}_{1}}{\tilde{n}_{2}+\tilde{n}_{1}}\right|^{2}
$$

If medium 1 is air（ $\tilde{n}_{1}=1$ ）

$$
R=\left|\frac{\tilde{n}_{2}-1}{\tilde{n}_{2}+1}\right|^{2}=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}
$$

for normal incidence $(\theta=0)$

Transmission 透射率
$T=1-R$

Absorption 吸收

Incident wave

$$
\mathbf{E}(x, t)=\mathbf{E}_{0} e^{i(k x-\omega t)}
$$

After traveling a distance L

$$
\begin{aligned}
\mathbf{E}_{T}(x, t) & =\mathbf{E}_{0} e^{i(k x-\omega t)} e^{i k L} \\
& =\mathbf{E}_{0} e^{i(k x-\omega t)} e^{i 2 \pi \tilde{n} / \lambda^{*} L} \\
& =\mathbf{E}_{0} e^{i(k x-\omega t)} e^{i 2 \pi n / \lambda^{*} L} e^{-2 \pi \kappa / \lambda^{*} L}
\end{aligned}
$$

Lambert Beer's Law

$$
I=I_{0} e^{-\alpha L}
$$

$$
\alpha=\frac{4 \pi \kappa}{\lambda}
$$

Transmission 透射

Reflection R 反射	
Absorption A 吸收	2

$$
R+A+T=1
$$

Example: Silicon

- At $\lambda=600 \mathrm{~nm}$, for $\mathrm{Si}, \tilde{n}=3.94+\mathrm{i}^{*} 0.025$, calculate
- Reflection R at the air/Si interface
- Absorption coefficient α at 600 nm
- Absorption by a Si film with thickness $L=0.01 \mathbf{~ m m}$

Example: Silicon

- At $\lambda=600 \mathrm{~nm}$, for $\mathrm{Si}, \tilde{n}=3.94+\mathrm{i}^{*} 0.025$, calculate
- Reflection R at the air/Si interface
- Absorption coefficient α at $\mathbf{6 0 0} \mathbf{~ n m}$
- Absorption by a Si film with thickness $L=0.01 \mathbf{~ m m}$

$$
R=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}=35.4 \%
$$

$$
\alpha=\frac{4 \pi \kappa}{\lambda}=5.24 * 10^{5} / \mathrm{m}
$$

$$
A=1-e^{-\alpha L}=99.5 \%
$$

Example：Silicon

－Silicon is a very good absorber at $\lambda=600 \mathrm{~nm}$
－It can be used to make solar cells and cameras
－Surface reflection is very strong
－It needs an anti－reflective coating ARC（减反膜）

$$
R=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}=35.4 \%
$$

bare Si wafer

$$
\alpha=\frac{4 \pi \kappa}{\lambda}=5.24 * 10^{5} / \mathrm{m}
$$

Si

$$
A=1-e^{-\alpha L}=99.5 \%
$$

solar cell with ARC

Example: Silver

- At $\lambda=600 \mathrm{~nm}$, for Ag, $\tilde{\boldsymbol{n}}=0.12+\mathrm{i}^{*} 3.66$, calculate
- Reflection R at the air/Ag interface
- Absorption coefficient α at 600 nm
- Absorption by a Ag film with thickness $L=100 \mathrm{~nm}$

Example: Silver

- At $\lambda=600 \mathrm{~nm}$, for Ag, $\tilde{\boldsymbol{n}}=0.12+\mathrm{i}^{*} 3.66$, calculate
- Reflection R at the air/Ag interface
- Absorption coefficient α at $\mathbf{6 0 0} \mathbf{~ n m}$
- Absorption by a Ag film with thickness $L=100 \mathrm{~nm}$

$$
R=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}=96.7 \%
$$

$$
\alpha=\frac{4 \pi \kappa}{\lambda}=7.67 * 10^{7} / \mathrm{m}
$$

$$
A=1-e^{-\alpha L}=99.95 \%
$$

Example: Silver

- Ag is a very good mirror at visible wavelengths
- Light can only propagate in Ag at a very small depth

$$
R=\frac{(n-1)^{2}+\kappa^{2}}{(n+1)^{2}+\kappa^{2}}=96.7 \%
$$

$$
\alpha=\frac{4 \pi \kappa}{\lambda}=7.67 * 10^{7} / \mathrm{m}
$$

$$
A=1-e^{-\alpha L}=99.95 \%
$$

mirror reflection

Multilayer Optical Structures

Solution based on the boundary conditions of Maxwell's Equations
calculated by Transfer Matrix Method
Lecture Note 5.2

Example: Anti-Reflective Coating (ARC)

At $\lambda=600 \mathrm{~nm}$, no ARC

$$
R(\mathrm{air} / \mathrm{Si})=35.4 \%
$$

Design an ARC

$$
n=\sqrt{n(\mathrm{air}) * n(\mathrm{Si})}=1.98
$$

$$
\begin{aligned}
& L=\frac{\lambda}{4 n}=75 \mathrm{~nm} \\
& R(\lambda=600 \mathrm{~nm})=0
\end{aligned}
$$

Homework 9.1

Example: ARC for Si

At $\lambda=600 \mathrm{~nm}$, no ARC

$$
R(\mathrm{air} / \mathrm{Si})=35.4 \%
$$

Design an ARC

$$
n=\sqrt{n(\text { air }) * n(\mathrm{Si})}=1.98
$$

$$
\begin{array}{r}
L=\frac{\lambda}{4 n}=75 \mathrm{~nm} \\
R(\lambda=600 \mathrm{~nm})=0
\end{array}
$$

Q: How to further reduce the reflection?

Example: ARC for Glass

For glass

$$
n=1.45
$$

At $\lambda=600 \mathrm{~nm}$, no ARC

$$
R(\text { air } / \text { glass })=3.4 \%
$$

Design an ARC
without ARC

$$
n=\sqrt{n(\text { air }) * n(\text { glass })}=1.2
$$

$$
\text { thickness }=\frac{\lambda}{4 n}=125 \mathrm{~nm}
$$

Example: Bragg Reflector

If we choose

$$
L_{A}=\frac{\lambda}{4 n_{A}}
$$

$$
L_{B}=\frac{\lambda}{4 n_{B}}
$$

Project 3

$$
R=\left(\frac{n_{A}^{2 N}-n_{B}^{2 N}}{n_{A}^{2 N}+n_{B}^{2 N}}\right)^{2}
$$

$$
\text { If } n_{A} \neq n_{B} \text {, when } N \rightarrow+\infty
$$

$$
R \rightarrow 100 \%
$$

Example：Bragg Reflector

A perfect mirror
（Bragg mirror）
（better than silver）

1D photonic crystal
（光子晶体）

Project 2

$$
R=\left(\frac{n_{A}{ }^{2 N}-n_{B}{ }^{2 N}}{n_{A}{ }^{2 N}+n_{B}{ }^{2 N}}\right)^{2}
$$

If $n_{A} \neq n_{B}$ ，when $N \rightarrow+\infty$
$R \rightarrow 100 \%$

Photonic Crystals（光子晶体）

－Periodically structured optical media
－Forming photonic band gaps
－no light can pass through（ $\mathbf{\sim 1 0 0 \%}$ reflection）
－color created by structure，not material absorption

Photonic Crystals in Nature

(e)

E. Armstrong and C. O'Dwyer, J. Mater. Chem. C 3, 6109 (2015)

Thank you for your attention

